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A stochastic analysis of the spatial and temporal structures in the Prigogine- 
Lefever-Nicolis model (the Brusselator) is presented. The analysis is carried 
out through a Langevin equation derived from a multivariate master equa- 
tion using the Poisson representation method, which is used to calculate the 
spatial correlation functions and the fluctuation spectra in the Gaussian 
approximation. The case of an infinite three-dimensional system is con- 
sidered in detail. The calculations for the spatial correlation functions and 
the fluctuation spectra for a finite system subject to different kinds of 
boundary conditions are also given. 
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1. I N T R O D U C T I O N  

Recent ly  Cha turved i  et al. (1~ and  G a r d i n e r  and  Chaturved i  (2~ have deve loped  
a new technique for  solving mul t ivar ia te  chemical  mas ter  equat ions  in t ro-  
duced  by  K i t a h a r a ,  (8~ G a r d i n e r  et al., (4~ and  van  K a mpe n .  (5~ The  technique is 
based  on an expans ion  o f  the p robab i l i t y  d i s t r ibu t ion  in Poisson dis t r ibut ions .  
This  enables  the chemical  mas ter  equat ions  to be t r ans fo rmed  into  exact  
F o k k e r - P l a n c k  equat ions ,  f rom which one can derive equivalent  Langevin  
equat ions ,  which m a y  then be solved per turba t ive ly  to ob ta in  a comple te  
a sympto t i c  expans ion  for  the var ious  momen t s  in the inverse powers  o f  the  
system size. This  m e t h o d  has  been discussed at  length in Ref. 2, where its 
app l ica t ions  to  var ious  l inear  and  nonl inear  systems were given. 

The  purpose  o f  this  paper  is to consider  in detai l  its app l ica t ion  to a well- 
s tudied example ,  the Brusselator .  (6-~ This  mode l  has  been analyzed  f rom 
var ious  po in ts  o f  view by a number  o f  authors .  G lansdor f f  and  Pr igogine have 
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carried out the stability analysis of the deterministic equation in Ref. 6 and 
found that with the combination of diffusion and nonlinear chemical kinetics, 
as a certain chemical parameter is varied, the steady state, which is initially 
homogeneous, may give rise to a dissipative structure which is spatially 
organized (the soft mode instability) or to temporal oscillations (the hard 
mode instability). A detailed analysis of the solutions of the deterministic 
equations for a finite one-dimensional system subject to various boundary 
conditions was given by Auchmuty and Nicolis (9~ using Hopf bifurcation 
theory. Post-instability solutions of the deterministic equations for a one- 
dimensional system with periodic boundary conditions have also been 
investigated by Kuramoto and Tsuzuki (10~ using their reductive perturbation 
approach. A stochastic treatment of this model without diffusion has been 
given by Tomita e t  al. ~ using a Fokker-Planck equation derived on the 
basis of van Kampen's system size expansion method. (12~ They also used 
numerical methods to investigate the behavior of the variances beyond the 
hard mode instability. Portnow and Kitahara (~3~ calculated the variances for 
this model without diffusion using a Langevin equation derived from a path 
integral method. Effects of diffusion on the fluctuations have been analyzed 
by Nicolis e t  al.  (14~ using a nonlinear master equation. (~5) Lemarchand and 
Nicolis (~6~ calculated the correlation functions for a finite one-dimensional 
system subject to two kinds of boundary conditions using cumulant expansion 
methods. Combining van Kampen's system size expansion method with the 
reductive perturbation method, Mashiyama et  al. (~7~ and Kuramoto and 
Tsuzuki(18~ have calculated the correlation functions in the neighborhood of 
the critical points. Similar results have been obtained by Wunderlin and 
Haken (~9~ in their work on scaling theory for nonequilibrium systems. Some 
interesting features of the fluctuation spectrum for this model have been 
investigated by Mazo (2~ and Deutch e t  al.  (2~ 

In none of the above is there a complete calculation of the correlation 
structure and the fluctuation spectra for a three-dimensional system, and this 
is the principal content of our paper. Our methods are based on a perturba- 
tire solution of the Poisson representation Langevin equations and are not 
reliable very close to a critical point. Other boundary conditions are easily 
treated and we illustrate this in Section 6. 

A brief outline of the paper is as follows. In Section 2 we derive the 
Langevin equations for the Brusselator using the Poisson representation 
method. Section 3 contains a discussion of the stability of the homogeneous 
steady state. In Section 4 we calculate the spatial correlation functions for a 
three-dimensional infinite system and discuss their behavior as the instability 
point is approached. In Section 5 we calculate the two-time correlation func- 
tions and the fluctuation spectra and briefly discuss some of its salient features. 
In Section 6 we formulate the Langevin equations for finite systems subject 
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to various boundary conditions and indicate how the correlation functions 
and the fluctuation spectra may be calculated. As noted above, the only work 
on this problem is that due to Lemarchand and Nicolis, whose results are 
straightforwardly obtained by our techniques. This section is a separate 
development, which uses the methods developed in the first five sections but 
is really logically independent of them. The reader not interested in this 
aspect of the problem may omit reading this section. Section 7 contains a few 
concluding remarks. In the appendices we give some results that follow from 
a linear Langevin equation, which are included for completeness. 

2. F O R M U L A T I O N  OF THE L A N G E V I N  E Q U A T I O N  
FOR THE B R U S S E L A T O R  

The reaction mechanism for the Brusselator is ~6~ 

A kl> X, B + X  - k~> Y + D ,  

2X + Y  ks > 3X, X k, > E (1) 

A master equation which describes the reaction (1) as occurring locally 
within cells (volume A V) of the system, labeled by indices i, j,..., with diffusion 
viewed as a transfer of molecules from cell i to cell j with a probability per 
molecule per unit time of d~ and dg, can be written (a-s~ 

dP(X,  Y ,  t) /dt  = ~ [d~(X~ + 1)P(X~ + 1, Xj - 1, X,  Y ,  t) - d~Xj(P(X,  Y ,  t) 

+ MS(Y~ + 1)P(X, Y, + 1, r j  - 1, Y ,  t) - d~ r iP(X ,  Y, t)] 

+ ~ {[k lAP(X,  - I, J~, Y ,  t) 

+ k 3 a ( x ,  + 0 f ( X ,  + 1, X, Y, - 1, Y, t) 

+ k3(X, - 1)(X, - 2)(Yi + 1)P(X~ - 1, X, Y~ + t, ~, t) 

+ k~(x, + 1)P(x, + l, R, Y, t)] 

-- [k~A + kzBX,  + k3X~(X, - 1) Y, + k ,X , ]P(X,  Y, t)} (2) 

Here the d~j can be chosen (as in Ref. 4) to vanish unless i and j represent 
adjacent cells, but we shall not always require this in this paper. In general, 
the important results are insensitive to the exact form of the du, as long as 
they decrease rapidly as the distance between cells i and j increases. 

The macroscopic chemical kinetics of this system are 

3px(r, t)/c3t = Dx Vepx(r, t)  + K 1 -- K2px(r, t) + KaPx2(r, t)py(r, t) -- K4px(r, t) 

Opz(r, t) /~t  = Dy V~oy(r, t) + K2px(r , t) - ~:spx2(r, t)p~(r, t) (2a) 
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where px and py are the concentrations of Xand  Yand we have taken account 
of the cell size dependence of kl, k2, k3, k4, A, and B by writing 

•1 AV = klA, K2 = k2B, K3(AV) -2 = k3, K~ = k~ 

The diffusion coefficient Dx is given by 

Dx = ~ tr~ - rjl2d x (2b) 

with a similar equation for Dy. 
Following Refs. 1 and 2, we expand P(X, Y, t) in Poisson distributions: 

] P(X, Y, t ) =  f [ I ~ f l  dc~x(i)day(i) [~x(i)]X~x~! [c*Y(i)]r'Y,I e-~xC~'e -~Y~' f(lxx, =~, t) 

(3) 

and substitute (3) in (2) to obtain a Fokker-Planck equation for the quasi- 
probability distribution 

Of(as, =r, t) 
~t 

= -- ~ D~ax(j) + K~ zX V - K2ax(i) 

~s 

--~ (OC~xa( &Zx2(~;c,r(i))[2Ka(AV)-%,xs(i)~y(i)]f(etx, try, t)(4) 

where 

D,j = d,j - ( ~  d,k) 3~ (5) 

This Fokker-Planck equation is an exact consequence of the master 
equation, though the quasiprobability need not have all the attributes of a 
probability, as shown in Ref. 2. 2 However, it is shown in Ref. 2 that exactly 

2 For example, f can in general be positive, negative, or even a function of a complex 
variable, and its variances can be negative, though those of P are always positive. 



Stochastic Analysis of a Chemical Reaction 473 

equivalent Langevin equations can always be derived, though this involves, 
in this case, the incorporation of a new form of Langevin source, which we 
have called third-order noise, to account for the third-order derivatives oc- 
curring in (4). Fortunately, these do not contribute to the leading terms in the 
expansion of the mean and correlation functions in inverse powers of AV 
(which is assumed to be large) and will therefore be omitted. The resulting 
Fokker-Planck equation is then exactly equivalent to the Langevin equation, 

Qx(i, t)) 
dt \~y(i ,  t) 

E D~~Ir(J' t) + K2"rlx(i , t) - K3rlx2(i, t)r/z(i, t) 
J 

+ 4 4 ~ , ~ ' ( i ,  Or/r(/, 0111'( 1 - - I /2~ '" (~x( i ,  t ) )  
- 1 / 2  0 ] \~:y(i, t) 

(6) 

where 

rl.(i, t) = ( A V ) - l a . ( i ,  t), tz = X,  Y 

= (A V)- 1,2 (7) 

( ( . ( i ,  t ) )  = O, (~.(i ,  t ) ~ ( j ,  t ' ) )  = 8.~ 8 u 8(t - t ')  

The mean and the correlation function in X~, Y~ variables are related to those 
in ~ through the following relations: 

{p.(i ,  t ) )  -- ( ix~(t)) /AV = (~.( i ,  t ) )  (8a) 

@.(i,  t), M J ,  t ) )  - ' A v  / 

= (~Tu(i, t ) )  8 . v ~  + (~7.( i, t), ~v(j, t))  (8b) 

A perturbative solution of (6) is achieved by expanding ~.(i, t) in powers of 
AV, 

~)u(i, t) = r/.,o(i , t) + r t) + ... (9) 

In the present work we shall limit ourselves to calculating the correlation 
functions in the Gaussian approximation, which amounts to retaining only 
the first two terms in the expansion (9)Y ~ 
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Substituting this expansion in (6), we get 

d /~x ,o ( i ,  t ))  
dt \~Ty.~ t) 

/ ~ D ~ x , o ( j ,  t) + x 1 - K~-qx,o(i , t)*lr, o(i, t) 

= 1 - - / +  ~7~x'~ t)~r,o(i, t) - ~Tx, o(i, t) ) (10) 
/ 
~ O~y,o( j ,  t) + Kz~Tx,o(i, t) -- ~7~r,o(i, t)rlY,o(i, t) 
\ - T  

and 

d l~Tx,l(i, t)] = [~ D rD'xj~x''(J;" t)) 

[2~/x,o(i, t)rly,o(i, t) - "c2 - 1 
+ [ k --2r/x,o(i, t)r/y,o(i, t) + xz 

+ 2[~7:~,o(i, t)r/,,o(i, t)J~/2( 
1 

-112 

where for simplicity we have put ,ca = ,% = 1. 
The relations (Sa) and (Sb) become 

<p,,(i, t)> = <%,o(i, t)> + O(~ 2) (12) 

<e~(i, t), e~(J, t)> = <~.0(i ,  t)) 8.~ 8,,lAy 
+ (1/AV)<-%,~(i, t)~7v.z(j , t)> + O(, ~) (13) 

For the sake of brevity we shall introduce the following matrix notation: 

S(i , j ,  t) = M(i, t)(8~./AV) + (1/AV)G(i , j ,  t) (14) 

where 

2,)  ) ~/x,o(, t) (~x.l(i, t) 
- ~ , . o ( i ,  t) \,7~.1(i, t) 

-1/2]~'~(r , ,r (11) 

s(i , j ,  t) =__ <p(i, t), pr(j, t)> (15) 

M.~(i, t) - <~,o(i, t ) )  8~ (16) 

G(i,j,  t) =- (~1(i, t)~Ir(j, t)> (17) 

Now the homogeneous steady-state solution of the deterministic equation 
(10) is 

,7~,o(i, t) = "cl ,  ~.,o(i, t) = ~ / ' c l  (18) 
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Substituting (18) in (11), we get 

d (~Tx,l(i, t)) u~x,l(J, t) 
d--/\~Tr,,(i, t) = D Y �9 + ,j~y,~(j, t) -,r - , r  \~,~(j ,  t) 

+ 2(K2K~)1/2 ( 1 -1 /2 ]~ /2 (~ :x ( i ,  t ))  (19) 
-1/2 0 } \~y(i, t) 

In the present work the matrix d~j, thus far unspecified, will be assumed to 
have the following standard form: 

d u = ( d  if i, j are nearest neighbors otherwise (20) 

Other choices for d~j are possible, which would give different short-wavelength 
behavior, but the more interesting long-wavelength behavior would be the 
same as that given by the choice in (20). ~2~ 

Presently, we shall solve (19) for an infinite, continuous system. A discus- 
sion of the solutions of (19) for a finite system with various boundary condi- 
tions is given in Section 4. 

In the continuum notation (19) and (14) become 

(d/dt)~h(r, t) = -A~h(r,  t) + BE(r, t) (21) 

S(r, r', t) = M(r, t) 8(r - r ')  + G(r, r', t) (22) 

where r is a continuous label and 

A =  ( - D x V 2 - K 2 +  1 ~c12 ) (23) 
K2 - D r Y  2 + K12 

B = 2(~r ~t2 _ 1/2 (24) 

and D = dl 2, l being the cell length. (For a discussion of certain difficulties 
involved in going over to a continuum notation and their clarification, the 
reader is referred to Ref. 2, Section 9.) 

3. STABIL ITY  OF THE H O M O G E N E O U S  S T E A D Y  STATE 

The Fourier transform of Eq. (19) is 

(d/dt)~h(q, t) = --A(q2)~l(q, t) + B~(q, t) (25) 

It is clear from (25) that the homogeneous steady state will be stable provided 
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tha t  the eigenvalues of  .~(q2) have positive real parts.  These eigenvalues are 
given by 

Az, h2 = �89 + Dy)q 2 + 1 + K12 - K2 

+ {[(Dx + Dr)q  2 + K12 + 1 - K212 

- 4[(Dxq 2 - K2 + 1)(Drq 2 + K12) + KI=K2]} 1/2] (26) 

= I { ( D x  + Dr)q  2 + 1 + K1 = - K2 + [(3 - K2 + KI=) = - 43K12] 11=} 

(27) 

where 8 = 1 + (Dx  - Dy)qL The homogeneous  steady state becomes un- 
stable when the real parts  o f  hi and ),2 become negative. The  marginal  situ- 
a t ion corresponds  to the case when one or bo th  of  the real parts  o f  2,1, h2 
go to zero and occurs if  (a) hi, ~2 real and  positive and h2 --+ 0 § (the soft 
mode  instability); (b) hi,  ha complex and Re(Az, h2)--+ 0 + (the hard  mode  
instability). I t  follows f rom (27) that :  

(3 - K= + KI=) = - 43~q 2 > 0 (28) 

Fo r  3 < 0, ),1 and ;~2 are always real. For  3 > 0, a ,  and  h= are real if  either 

'~= > (~/8 + ,q)= or K1 < (V'-8 - ,q)= (29) 

hi and  h2 are real and  positive if, in addi t ion to (29), we have 

(Dx  + Dr)q  = -  K2 + 1 + K, 2 > 0 

i.e., 

and  

i.e., 

K2 < 1 + K12 + (Dx  + Dr)q  2 

(Dxq  2 - K 2 + 1)(Dyq 2 + K12) + K12K2 > 0 

(30) 

K2 < 1 + Dxq  2 + (K12/Dyq 2) + (DxK12/Dy) (31) 

h a - +  0 § along the real axis with h 1 real and positive if (29) and (30) are 
satisfied and 

x 2 ~ K2s(q 2) =- 1 + D x q  2 + (K12/Dyq 2) + (DxK12/Dr) (32) 

f rom below. With  K1, D x ,  and Dr  fixed, the min imum of  K2s(q 2) occurs at  

[q[ = x l / ( D x D r )  1'2 (33) 

and  its m i n i m u m  value is 

K2s = [1 + KI(Dx/Dy)ll2] 2 (34) 
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Equation (34) gives the threshold for the soft mode instability. As K 2 is 
increased beyond ~2s, the system exhibits spatial oscillations characterized 
by a wave vector given by (33). 

(ii) ,~1 and ,~2 are complex if (3 - K2 + K~2) 2 - 48K12 < 0, i.e., 

( ~  _ K~)2 < ~2 < (v"g + ~ y ,  8 > 0 (35) 

and have positive real parts if 

( D x  + Dr)q  2 + 1 + K 1 2 -  ~:2 > 0 

i.e., 

x2 < 1 + ~: 2 + (Ox  + Or)q  2 (36) 

~ and A2 become purely imaginary as 

'~2 -> ~c2n(q 2) - 1 + ~ 2 + (Dx  + Dr)q  2 (37) 

from below. The minimum of K2n(q 2) occurs at 

q = 0 (38) 

and hence the threshold for the hard mode instability is 

K2~ = 1 + K12 (39) 

AS K2 is increased beyond ~2H, the system exhibits temporal oscillations. 
Which of the two instabilities occurs first depends on the relative magni- 

tude of D x  and Dr. Thus the soft mode instability occurs first if 

K2S ~ K2H 

i.e., 

and vice versa. 

( Dx~ 1/2 ( 1 '~1/2 I (40) 
D r /  < 1 + •1--5] K1 

4. SPAT IAL  C O R R E L A T I O N  F U N C T I O N S  B E L O W  THE 
I N S T A B I L I T Y  T H R E S H O L D S  

(a) From a two-dimensional Langevin equation of the type (25) in the 
steady state one can derive the following expression for (7(q, q') in terms of 

and B: 

G(q, q') - ~(q + q')~(q) 

G(q) = (Det A)B 2 + [.d - (Tr X)IIB2[~ - (Tr ~) i ] r  
2(Bet ~)(Tr _~) (41) 

This relation is derived in Appendix A. 
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Substituting for .~(q2) and B 2 in (41) and using (22), we obtain the 
following expression for the Fourier  t ransform of  the spatial correlation 
function:  

~(q, q') = 8(q + q')~(q) 

~(q) = M +  G(q) = M +  
H(q 2) 

[(q2 + fi 2)(q2 + f122)(q2 + fi32)] 
(42) 

where 

2KIK2 
H(q2) = DxDr(Dx + Dr) (43) 

[ (Dyq 2 + K12) \ 

• I x [(Dx + Dr)q 2 -  K2 + 1] + K~2K2 -- (Dyq 2 + K~2)(Dxq 2 + 1) ) 
\ -- (Drq 2 + ~:12)(Dxq 2 + 1) (Dxq 2 + 1) 

fll 2=  1 - K 2  + ~:12 

Dx + Dy 

1 (Dx ,q  2 + Dy(1 - ,~2) (44) 
fl22' fia2 = ~2 Dx Dr 

. ( 4 ~ K 2  DxK12 + Dy(1 - 

Splitting the second term on the rhs of  (42) into partial fractions and per- 
forming the Fourier  inversion, we get the following expression for the spatial 
correlation function in three space dimensions: 

S(Ir - r 'l) = M ~(r - r') + 
al exp(-/31]r - r ' l )  

Ir - r'{ 

+ a2 exp(--~,llr -- r ' l )cosb,2lr  -- r']) 
Ir -- r'[ 

+ a8 e x p ( - y ~ ] r  - r'l)sin(~,2]r - r'l) 
Ir - r' l  

(45) 
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where 

~1 -- (1 Di- K~+. +D~..12~1,~! (46) 

= 1 + Klt  ] 

t~rr } K~] f ] (47) 

=- 71 +- i72 

H(-/312) (48a) 

1 ~ H ( - f 1 2 2 )  (485) 
a2 - im(322) t~e/32--- ~ :/3-~2 

1 H ( - 3 ~  ~) a3 = ~ - ( - - ~  Im (48c) 

The expression for the spatial correlation function is characterized by two 
correlation lengths, 

1 _ ( 1  Dx + Dr ~1/2 
l~ i t31 , - . - -  ~ - ~ - + - ~ 2 ]  ( 4 9 )  

= [ [Dx]~l~l~ to ~ = L 1 + - ~ (50) 

and a wave vector 

~,~ = {K~ - [1 - ~l(Dx/D~)'~]~} "~ (51) 

(b) We treat the behavior of S ( ] r  - r ' l )  near the instability thresholds 
as follows. 

(i) As  ,~ --> K2s 

l~.2 ~ 0o (52) 

and Y5 approaches the critical wave vector 

qo = ~ q / ( D x D r )  ~/2 (53) 

and the spatial correlation function contains, apart from an exponentially 
decreasing term, a purely oscillatory term modulated by a l/jr - r' I term. 

Actually, in this limit, the coefficients of the oscillatory terms become 
infinite, which perhaps reflects the nonvalidity of the Gaussian approximation 
near the critical point. 

(ii) As K~ -+ K2~ 

/~,~ - ~  ~ (54) 
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and (45) gives 

1 a ' exp(-71' l r  - r'[) cos(7(lr _ r,l) 
S(Ir - r ' t )  = al'  [r - r'--~--] + 2 ~ ---r'D 

, exp(-71'[r  - r'l) sin(72,lr _ r'l) (55) 
+ a3 Ir - r ' l  

where a~', a2', etc., are the values of a~, a2, etc., as K2 --> K2u. Thus as ~2 ---> 
~2z~, the spatial correlation function is characterized by a long-range 
1/Ir - r'l term. 

. T W O - T I M E  C O R R E L A T I O N  F U N C T I O N S  A N D  T H E  
F L U C T U A T I O N  S P E C T R U M  

In the Gaussian approximation as defined earlier the two-time correlation 
functions in the steady state are given by 

T(q, q', t) = (p(q, t), or(q,, t ' ))  = {exp[-A(q2)l t l]}S(q,  q') 

T(q, q', t) = ~(q + q')T(q, t) 

Defining 

we get 

(56) 

(57) 

T(q, t) = {exp[--~(qZ)t ]}S(q) (58) 

The exponential factor on the rhs of (56) represents the response of the mean 
concentration to a small change in the initial conditions. For nonequilibrium 
situations this result has been derived by Kitahara ~3t using path integral 
methods and also by Gardiner and Chaturvedi ~2) using the Poisson repre- 
sentation method. 

From an experimental point of view, a quantity of interest is the fluctu- 
ation spectrum defined by 

F(q, o)) = (1/2~r) dt e-~tT(q, t) (59) 
o o  

A qualitative discussion of the fluctuation spectrum for the Brusselator has 
been given by Deutch et al., ~21) who also explore the possible use of light 
scattering for its measurement. A general but comprehensive discussion of 
the use of light scattering experiments for a study of concentration fluctu- 
ations in chemically reacting systems may also be found in Ref. 22. In such 
experiments, one typically measures the intensity of the scattered light, which 
is directly related to a linear combination of the matrix elements of F(q, ~o). 
In the following we give a complete calculation of the fluctuation spectra. 
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Using (56) and the Langevin equat ion (25), we derive in Appendix B 
the following expression for the fluctuation spectrum in terms of  the matrices 
X, B 2, and M:  

F(q, w) = (1/2~r)(iwI + .4)-1[B2 + M.4 r + . ~M]( - ioo I  + ~T)-z  (60) 

Substituting for .4, B 2, and M in (60), we get 

F(q, w) = P(w, q) 

• ({w 2 - [(Dxq 2 - K2 + l ) (Drq  2 + ~:z ~) + K12K2]} 2 

+ w2[(Dx + Dr)q 2 + 1 + ~12 - K212) -~ (61) 

where the matr ix elements of  P(w, q) are 

Pxx(W, q) = (K1/~){(Dxq 2 + K2 + 1)w 2 

+ (Drq 2 + KI2)[(Dyq 2 + K~2)(Dxq 2 + ~2 + 1) -- K12K2]} (62a) 

PxY( w, q) = p*x(W, q) 

= --(K~K2fir){w 2 + [(Dxq 2 + K2 + 1)(Drq 2 + xl 2) - K~2K2] 

+ 2iw(Dxq ~ + 1)} (62b) 

Pry(W, q) = (K2firK~)[(Drq 2 + ~q2)w2 + (Drq 2 + Kz2)(Dxq 2 -- K2 + 1) 2 

+ 2,~z2,r 2 + 1)] (62c) 

The fluctuation spectrum has poles in the w plane at 

w =_+ iP_+  w o (63) 

where 

s = �89 + Dr)q 2 + 1 + K12 - K~] (64) 

Wo = �89 ~ - K2 + 1)(Dyq 2 + K12) + K~2K2] 

- [(Dx + Dy)q 2 + 1 + Kz 2 - ~212}~/2 

= �89 = - (3 - , ~  + ,q~)211/~ ( 6 5 )  

(i) It follows f rom the discussion in Section 3, Eq. (28), that  below the 
soft mode  instability threshold w0 is imaginary, in which case the fluctuation 
spectrum is of  the following form:  

F(w, q) = 1_._ P(w, q) (66) 
[w + ( r  - iwol)=][w = + ( r  + Iwol) =] 

and therefore has a peak at w = 0. 
As the soft mode instability threshold is approached,  ]w0[ -+ I" and (64) 

becomes 

F(q, w) - 1 P(w, q) (67) 
~K1 (w ~ + 4P2)w ~ 

which exhibits an infinitely sharp peak at w = 0. 
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(ii) Below the hard mode instability, it follows from Section 3, Eq. (35), 
that COo is real and in this case the fluctuation spectrum has the following 
form: 

P(co' q) (68) 
F(q, co) = [(w - Wo) 2 + p2][(co + o90)2 + F2] 

Leaving aside the o) dependence of P(co, q), the fluctuation spectrum in this 
case consists of two peaks situated at co = + coo with a half-width equal to P. 

As the hard mode threshold is approached, lP decreases monotonically, 
i.e., the peaks become sharper. If  ~c2 is initially less than 3 + K12, coo increases, 
and as ~2 becomes greater than 3 + K12, coo begins to decrease and at the 
threshold it becomes equal to K~. Thus at the threshold the peak separation 
becomes 

2cooc = 2K1 

and the width of the peaks becomes 

Vo = �89 + Dy)q 2 

and arises purely due to diffusive effects. 
The co dependence of P(co, q) gives rise to a slight skewness of the two 

peaks, but the qualitative features of the fluctuation spectrum remain 
basically the same. 

6. L A N G E V I N  E Q U A T I O N S  W l T H  B O U N D A R Y  C O N D I T I O N S  

In this section we consider the application of the Langevin equations 
derived from Poisson representation methods to finite discrete and con- 
tinuous one-dimensional systems and show how to calculate the spatial and 
correlation functions and fluctuation spectra when various boundary condi- 
tions are imposed on the system. The only previous work on this problem is 
that due to Lemarchand and Nicolis, ~16~ who use the cumulant expansion 
method to calculate spatial correlation functions in a finite one-dimensional 
system subject to two types of boundary conditions: (a) fixed-concentration 
boundary conditions and (b) zero-flux boundary conditions. We shall confine 
ourselves to these two types of boundary conditions and rederive the results 
of Lemarchand and Nicolis ~16~ rather simply. From the following discussion 
it will also become clear how one may carry out similar calculations 
for other types of boundary conditions, for example, periodic boundary 
conditions. The generalization to three-dimensional finite systems is also 
straightforward. 
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6.1. F i x e d - M e a n - C o n c e n t r a t i o n  Boundary  Condi t ions  

Here we consider a finite one-dimensional system consisting of n + 2 
cells labeled 0, 1 .... , n, n + 1. We assume that the probability distributions in 
the boundary cells 0 and n + 1 are Poisson distributions with means equal 
to the mean steady-state concentration. This boundary condition in terms of 
~.(i, t) variables implies that ~7.(0, t) and ~.(n + 1, t) are nonfluctuating 
variables equal to the steady-state concentration. (It should be noted 
that if the probability distribution in the boundary cells is assumed to 
factorize from that for the system cells, then as a consequence of the linear 
coupling between the two through diffusion only the mean number in the 
boundary cells appears as a parameter in the reduced master equation for the 
system cells and consequently the results are insensitive to the precise nature 
of the probability distribution in the boundary cells.) Thus in this case we 
get the same results as those of Lemarchand and Nicolis/~6) who consider 
fixed-concentration boundary conditions, i.e., P(X) = 8X,Xo in the boundary 
cells. 

From the above discussion it follows that the appropriate linearized 
Langevin equation in this case is 

- -  = + 

at \~Ty.z(i, t) D~Ty,~(j, t) -Ke -Kz2J\ny.l(i,  t) 

- 1 / 2  0 ] \~y(i, , i = l , . . . , n  (69) 

subject to the boundary conditions 

~7.,1(0, t) = ~/~,l(n + 1, t) = 0 (70) 

In the continuum limit (69) and (70) become 

d(71x . l ( r , t ) )  = (dxl2V2+K2 - 1  
dt Vqr.l(r, t) \ -K2 drl2V 2 - K12J \~/r,l(r, t) 

and 

�9 /.(0, t) = ~.(L, t) = 0 

where I is the cell length and L is the length of the system. 

(72) 
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6.2.  Z e r o - F l u x  B o u n d a r y  C o n d i t i o n s  

Here we consider the situation in which there is no diffusion between the 
system cells and the boundary cells. This can be taken into account by 
modifying the diffusion matrix D~j to 

D~j - dS~.l(Sj,o - 8j.1) - dS~.~(Sj.~+ l - 3j.~) 

where the extra terms cancel the terms present in D,~ that allow for diffusion 
between the cell 1 (n) and 0 (n + 1). The corresponding Langevin equation 
then becomes 

d_ t)) 
dt \ny, l(i, t) 

1 ~  DX~x.,(j. t) -- dX3,.,(~x.,(O, t) -- ~x.,(l. t))\ 

I I 

~ D~y.,(j. t) - dY3,.,(~v.z(O, t)- r/y..(l. , ) ) J  

\ -- dY3~,.(V~, l(n + 1, t) - ~7~,1(n, t)) 

+ (K 2 - 1  K.2](~x.,(i,t)t)) 
\ -- K2 -- K1 z] \7/y,1(i, 

+ (4K1K2)l/2( 1 - -1 /2] l '2 (~x( i , t ) )  
--1/2 0 ] \~y( i , t )  ' i =  1,...,n (73) 

which may equivalently be written as Eq. (69) subject to the boundary condi- 
tions 

�9 /~,~(0, t) - ~u,~(1, t) = 0, ~7~,~(n, t) - ~7~,~(n + 1, t) = 0 (74) 

In the continuum limit the appropriate Langevin equation is (71) subject to 
the boundary conditions 

~.~(r,~r t) ~=o = ~.,~(r,~r t) I~=~ = 0 (75) 

In both cases the equations for ~,~(i, t) are identical but because of the 
boundary conditions, different Fourier expansions are required to diagonalize 
the diffusion terms. The appropriate Fourier expansions are given below. 

(a) 71~,~(i, t) = ~ r t) sin[iqzr/(n + 1)] (76) 
q = l  

In the continuum limit 

~Tu,~(r, t) = ~ r t) sin(qr~r/L) (77) 
( 1 =1  
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and 
r~ 

(b) ~u,,(i, t) = ~ ~,~(q, t) cos[(q - 1)(2i - 1)rr/2n] (78) 
q = I  

In the continuum limit 

~1~,1(r, t) = ~ ~q.,l(q, t) cos(q~rr/L) (79) 
q = 0  

Substituting these and similar expansions for ~. in the corresponding 
Langevin equations, we get 

(d/dt)~h(q, t) = _ ~,(q2)~(q, t) + B~(q, t) (80) 

with 

where 

and 

and 

t ! (~ (q ,  t)) = O, (~u(q, ) ~ ( q ,  t ')) = h(q, q') 8(t - t') (81) 

_~,(q2)=(dxg(q)+l--K2 -K~ 2 ) 
K2 drg(q) + K12 

q~- ) 2 8q,r (a) g(q) = 2 1 - cos ~-~---~ , h(q, q') = n +------~ 

In the continuum limit 

g(q) = t2q%r2/L 2, h(q, q') = (2//,) 8v,r 

(82) 

(b) g ( q ) = 2 ( 1 - c o s  ( q -  1)rr) 2 ( . ~ )  , h(q, q') = n 8~,q, 1 - 

In the continuum limit 

g(q) = 12q%r2/L 2, h(q, q') = (2/L) 8q,r - �89 o) 

The Fourier transform of  the steady-state spatial correlation functions and 
the fluctuation spectrum can be calculated using (80), (42), and (58). 

Although the above discussion applies to a one-dimensional system, its 
generalization to more than one dimension is straightforward. 

Having thus calculated G(q, q'), one may derive expressions for G(i, j )  
by appropriate Fourier inversions and for the one dimensional case one 
obtains results identical to those given by Lemarchand and Nicotis. (16~ The 
Fourier inversions are possible analytically only for a one-dimensional con- 
tinuous system and we find with Lemarchand and Nicolis (18~ that near the 
soft mode instability threshold, G(i, j )  can be decomposed into a short-range 
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part consisting of decaying exponentials and a long-range, linearly damped 
oscillatory part of the following form: 

b w 2 ( L  - r) cos[72(L - r)] sin(72r') 

+ b272r' sin[72(L - r)] cos(72r' ) + b3 (83) 

where 72 has been defined previously. 
In the limit of L ~ 0% (83) is divergent. Direct calculation of G(r, r') 

for an infinite one-dimensional system shows that as the soft mode instability 
threshold is approached, G(r, r ')  actually becomes infinite. However, it 
should be remembered that these results are derived in the Gaussian approxi- 
mation, whose validity at the critical point is questionable. 

7. C O N C L U S I O N S  

We have calculated in the Gaussian approximation the spatial correla- 
tion functions and the fluctuation spectra of the Brusselator for a three- 
dimensional infinite system below the instability thresholds. We have shown 
that as the soft mode instability threshold is approached from below the 
spatial correlation functions exhibit an oscillatory behavior modulated by a 
1/I r - r ' l  term. At the critical point, however, the spatial correlations become 
infinite. The fluctuation spectrum in this limit exhibits an infinitely sharp peak 
at oJ = 0. In the case of the hard mode instability the spatial correlation 
functions at the instability point exhibit a long-range 1/[r - r'[ behavior. 
The fluctuation spectrum in this case exhibits two peaks below the instability 
thresholds and as the instability threshold is approached the peaks move 
toward each other, at the same time becoming sharper until at the critical 
point the separation becomes twice the critical frequency and the widths of 
the peaks are determined solely by the diffusive effects. 

We have also shown how the spatial correlation functions and the 
fluctuation spectra may be calculated for a finite one-dimensional system 
subject to boundary conditions and have obtained results in agreement with 
those of Lemarchand and Nicolis. (16~ In this case, as the soft mode instability 
threshold is approached, we find, with Lemarchand and Nicolis, that the 
spatial correlation functions have a long-range, linearly damped part with 
coefficients proportional to the size of the system, becoming divergent in the 
limit of an infinite system. 

All the above results rely on the Gaussian approximation and are 
obtained straightforwardly by our methods as compared to other techniques 
to the same degree of approximation. 

If it is desired, the corrections to the Gaussian approximation can be 
calculated systematically from our Langevin equations, although this would 
require incorporation of the noise sources corresponding to the third-order 
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derivatives in the Fokker-Planck equation, the necessary techniques for 
which were explained in Ref. 2. At the critical point this perturbation method 
with the inverse of the cell size as the expansion parameter breaks down. It 
should be noted that most of the work done to date on calculation of the 
correlation functions near the critical points uses the distance from the 
critical point as an expansion parameter but relies on a Fokker-Planck equa- 
tion which already assumes the Gaussian approximation. Given the non- 
validity of the Gaussian approximation near the critical points, this procedure 
seems rather questionable. Our Langevin equations, however, provide an 
exact starting point for doing calculations near the critical points without 
having to rely on the Gaussian approximation. Work along these lines is 
proceeding. 

A P P E N D I X  A 

The solution of the linear Langevin equation (25) is 

f~1(q, t) = {exp[-_4(t - t')l}B~(q, t) (A1) 

which gives 

t G(q, q ,  t) -- (f]l(q, t)f'hT(q, t)) = ~(q + q') exp(--_~t') B 2 exp(-.4:~t ') (A2) 

and hence 

f2 G(q, t) = exp ( -At ' )  B 2 exp(-.4Tt ') (A3) 

In the steady state, taking the limit t -+ oo in (A3), we get 

fo G(q) = exp( -  .4t') B ~ exp( -  A2"t ') (A4) 

It follows from (A4) that 

fo d [ e x p ( - ' )  e x p ( - ' ) ]  = (A5) ~G + C ~ =  2t B2 dr' B2 

Now since every matrix obeys its characteristic equation, which in the two- 
dimensional case is 

~2 _ (Tr .4)_d + (Det A) = 0 (A6) 

it follows that exp ( -At )  is a polynomial in/Y of degree 1. Thus, taking into 
account Eq. (A4) for G, G must have the following form: 

C = ~B 2 +/3(AB 2 + B2_d T) + 7.4B2.~ T (A7) 
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Substituting (A6) in (A4) and using (A5), we find that (A5) is satisfied 
provided that 

a + (Tr A)/3 - (Det A)y = 0 
(AS) 

2(Det X)/3 + 1 = 0, /3 + (Tr-d)7 = 0 

Solving (A8) for c~,/3, and y and substituting in (A6), we get 

G = (Det A)B 2 + [ ~ -  (Tr . 4 ) I ] B 2 [ ~ -  (Tr .~)i]r 
2(Tr A)(Det A) (A9) 

A P P E N D I X  B 

From the definition of the fluctuation spectrum of Eq. (59) it follows 
that 

L F(q, w) = (1/270 e-'~ t) dt + e-~tT(q, t) (B1) 
oo 

Changing t -+ - t in the second term on the rhs of (B1) and using the following 
property of the steady-state two-time correlation function 

T(q, - t) = Tr(q, t) (B2) 

we get 

;o F(q, ~o) = (1/2~r) e-~~ t) + e~~ t) (B3) 

Substituting for T(q, t) from (56), we get 

F(q, oJ) = (l/2rr)(ioJI + ~) - lg (q )  + g(q)(- ioJI  + ~ ' ) - 1  (B4) 

which gives 

(icoI + A)F(q, oJ)(-icoI + At) = (1/2~-)[AS + S_d~'] (B5) 

using the relation 

= M + G (B6) 

and (A5), we get 

F(q, o)) = (1/2rr)(icoI + A)- I [MA r + A M  + B21(-iooI + ~r ) - I  (B7) 

A corresponding result has been derived by Lax(2a> for the Langevin equations 
arising from classical noise. 
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